
Fast preconditioners for
time-harmonic wave equations

Jack Poulson1 Lexing Ying1,2 Björn Engquist1,2

Sergey Fomel1,3 Siwei Li1,3

1ICES, UT Austin

2Department of Mathematics, UT Austin

3Jackson School of Geosciences

ICERM, January 9, 2012
(revised January 15, 2012)

1 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

2 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

3 / 34



Time-harmonic wave equations

Wave equations are often approximated by superimposing
solutions of their time-harmonic form.

Three common categories:
I Helmholtz equation (from acoustic wave equation)
I Time-harmonic Maxwell’s equations
I Time-harmonic linear elasticity

Our strategy is independent of the specifics of the equation and
heavily exploits absorbing boundary conditions.1

This talk focuses on the simplest case, the Helmholtz equation.

1P. Tsuji et al., “A sweeping preconditioner for time-harmonic Maxwell’s
equations with finite elements”

4 / 34



The Helmholtz equation

[
−∆− ω2

c2(x)

]
u(x) = f (x), x ∈ Ω ⊂ Rd

I Helmholtz operator is elliptic, but indefinite

I With real Dirichlet boundary conditions, usual discretizations will
be real symmetric (Hermitian) and indefinite

I Sommerfeld radiation condition often imposed on at least one
side, but PML yields complex symmetric (non-Hermitian)
matrices (least squares methods are another story...)

I Solving large 3d Helmholtz equations is challenging:

I Standard preconditioners ineffective for high frequencies
I Sparse-direct solves prohibitively expensive (with n grid

points per dimension, O(N2) = O(n6) work)

5 / 34



The damped Helmholtz equation

[
−∆− (ω + iα)2

c2(x)

]
u(x) = f (x), α ≈ 2π

Rough idea: the preconditioning operator’s long-range interactions
will be less accurate than for short-range, so damp waves by adding a
positive imaginary component to the frequency.

I Basic strategy is to use approximate inverse of damped
Helmholtz equation as preconditioner for GMRES

I The damping parameter effects the convergence rate and is
velocity and frequency dependent, but it can typically be chosen
near 2π.

6 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

7 / 34



Sweeping preconditioners

Engquist and Ying recently introduced two sweeping preconditioners.
Both approximate Schur complements in block LDLT factorization
with a particular ordering:

PML

x →

↑
y

physical

z →

8 / 34



Sweeping preconditioners

Engquist and Ying recently introduced two sweeping preconditioners.
Both approximate Schur complements in block LDLT factorization
with a particular ordering:

A
3,3

A
2,2

A
1,1

9 / 34



Sweeping preconditioners

Engquist and Ying recently introduced two sweeping preconditioners.
Both approximate Schur complements in block LDLT factorization
with a particular ordering:

0BBBBB@
A1,1 AT

2,1

A2,1 A2,2
. . .

. . .
. . . AT

m,m−1
Am,m−1 Am,m

1CCCCCA = L1 · · · Ln−1

0BBB@
S1

S2
. . .

Sm

1CCCA LT
n−1 · · · L

T
1 ,

I A is block-tridiagonal discrete damped Helmholtz operator

I Each block corresponds to one panel

I A1,1 must correspond to a boundary panel with PML

I S−1
i =(Ai,i−Ai,i−1S−1

i−1Ai−1,i)
−1, restricted half-space Green’s function!

I Each Li is a block Gauss transform2, Li = I + Ei+1 Ai+1,i S−1
i ET

i .
2The elementary matrix kind, not a sum of Gaussians

10 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

11 / 34



H-matrix approach

I Original sweeping preconditioner approach
I “Simply” updates and inverts Schur complements of

implicit block LDLT factorization of damped Helmholtz in
particular ordering in H-matrix arithmetic

I Inverting H-matrices in parallel is more expensive but
scalable (with Schultz iteration)

I Subject of another talk (PP12)...sandbox code called DMHM

12 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

13 / 34



Moving PML approach

Key point: S−1
i is the discrete halfspace Green’s function

restricted to the i ’th panel. Approximate by putting an
artificial absorbing boundary condition directly on the
panel (which preserves sparsity).3

PML

i ’th panel

...

≈ PML

i ’th panel

...

3C.f. Atle and Engquist, "On surface radiation conditions for
high-frequency wave scattering"

14 / 34



Moving PML approach

Key point: S−1
i is the discrete halfspace Green’s function

restricted to the i ’th panel. Approximate by putting an
artificial absorbing boundary condition directly on the
panel (which preserves sparsity).3

The preconditioner setup is just sparse-direct LDLT

factorizations on each PML-padded subdomain. With O(n)
subdomains with O(n2) degrees of freedom each, complexity is

O(n(n2)3/2) = O(n4) = O(N4/3),

and memory requirement is only

O(n(n2 log n2)) = O(n3 log n) = O(N log N)

3C.f. Atle and Engquist, "On surface radiation conditions for
high-frequency wave scattering"

15 / 34



Moving PML approach

Key point: S−1
i is the discrete halfspace Green’s function

restricted to the i ’th panel. Approximate by putting an
artificial absorbing boundary condition directly on the
panel (which preserves sparsity).3

Each preconditioner application requires two solves against
each subdomain (one each for solving against L and LT ). The
application complexity is thus

O(n(n2 log n)) = O(n3 log n) = O(N log N).

Note that subdomains must be solved against one at a time!

3C.f. Atle and Engquist, "On surface radiation conditions for
high-frequency wave scattering"

16 / 34



Applying approximate Green’s functions

S−1
i gi ≈ vi ,


∗
...
∗
vi

 = H−1
i


0
...
0
gi


Applying approximate Green’s function takes three steps:

1. Extend right-hand side by zeroes on the artificial PML region

gi 7→


0
...
0
gi



17 / 34



Applying approximate Green’s functions

S−1
i gi ≈ vi ,


∗
...
∗
vi

 = H−1
i


0
...
0
gi


Applying approximate Green’s function takes three steps:

2. Perform sparse-direct solve against Hi
∗
...
∗
vi

 := H−1
i


0
...
0
gi



18 / 34



Applying approximate Green’s functions

S−1
i gi ≈ vi ,


∗
...
∗
vi

 = H−1
i


0
...
0
gi


Applying approximate Green’s function takes three steps:

3. Extract original degrees of freedom
∗
...
∗
vi

 7→ vi

19 / 34



Challenges for scalability

I Roughly half of the work is in sparse-direct triangular
solves (and therefore, dense triangular solves)

I Dense triangular solves with O(1) right-hand sides are, at
best, weakly scalable

I Triangular solves with O(p) right-hand sides are scalable,
but this requires too much memory

I Parallelism in preconditioner application limited to quasi-2d
subdomains!

I Black-box sparse-direct redistributes right-hand sides for
solve

I MUMPS and SuperLU_Dist were not memory scalable,
and WSMP is not open source, nor does it support large
numbers of simultaneous factorizations

20 / 34



Fighting for scalability

I Wrote custom sparse-direct solver, Clique, on top of my
distributed dense linear algebra library, Elemental
(and made sure it was memory scalable!)

I Subdomain sparse-direct factorizations use
subtree-to-subcube mappings and 2d front distributions
(and redistribute fronts to 1d distribution after factorization)

I Globally reordering global right-hand sides based upon
subdomain front distributions avoids communication in
sparse-direct subdomain solves

I Dense triangular matrix-vector multiplication has a much
lower latency cost than a dense triangular solve...so invert
diagonal blocks of distributed fronts after factorization
(solve latency drops from O(m log p) to O(log p) for m ×m
matrix).

21 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

22 / 34



Overthrust model

Velocity in [km/s] of middle XY , XZ , and YZ planes:

Domain is 20 [km] x 20 [km] x 4.65 [km], with low velocity and
faults near surface and high velocity near the bottom. Grid is
801× 801× 187. 23 / 34



Overthrust convergence

0 20 40 60

10−5

10−4

10−3

10−2

10−1

100

Iteration

m
ax
‖b
−

A
x‖

2/
‖b
‖ 2

Figure: Convergence of moving PML sweeping preconditioner in
GMRES(20) with three near-surface shots for the full Overthrust
model with ω = 128.63 [rad/sec] and α = 2.25π [rad/sec].

24 / 34



Overthrust runtime on 2048 cores

Without distributed diagonal-block inversion:
I Setup time: 250 seconds
I Application time: 90 seconds/iteration
I Total: 72 minutes with 45 iterations (4 digits of accuracy)

With distributed diagonal-block inversion:
I Setup time: 280 seconds
I Application time: 26 seconds/iteration
I Total: 24 minutes with 45 iterations (4 digits of accuracy)

25 / 34



xz-plane solution for top-center shot, y = 2.025 [km]

26 / 34



xz-plane solution for top-center shot, y = 4.025 [km]

27 / 34



xz-plane solution for top-center shot, y = 8.025 [km]

28 / 34



xz-plane solution for top-center shot, y = 9.825 [km]

29 / 34



xz-plane solution for top-center shot, y = 17.025 [km]

30 / 34



Outline

Time-harmonic wave equations

Sweeping preconditioners
H-matrix approach
Moving PML approach

General algorithm
Scalability issues

Results

Conclusions

31 / 34



Conclusions

I The moving PML preconditioner has near-linear complexity
and memory usage for realistic models and can be made
reasonably scalable

I The setup cost becomes insignificant on large numbers of
cores due to better scalability properties

I Inverting diagonal blocks of distributed fronts results in
negligible extra work and greatly speeds up preconditioner
application

32 / 34



Future work

I Trying larger models on more processors
I Switching to spectral elements
I Trying alternatives to PML (to lower memory usage)
I Block Krylov algorithms
I Adding support for more general geometry
I Adding support for Maxwell and/or elasticity
I Finding cheap estimates of the damping parameter
I Testing efficacy of strongly admissible H-matrix approach
I Performance tuning

33 / 34



Availability

I Elemental is available at
code.google.com/p/elemental

I Clique will be available in March at
bitbucket.com/poulson/clique

I PSP will be available in March at
bitbucket.com/poulson/psp

I DMHM sandbox will be available in March at
bitbucket.com/poulson/dmhm

34 / 34

code.google.com/p/elemental
bitbucket.com/poulson/clique
bitbucket.com/poulson/psp
bitbucket.com/poulson/dmhm

	Time-harmonic wave equations
	Sweeping preconditioners
	H-matrix approach
	Moving PML approach

	Results
	Conclusions

